Quantcast
Channel: MoneyScience: 's news items
Viewing all articles
Browse latest Browse all 1798

Text-based crude oil price forecasting. (arXiv:2002.02010v1 [q-fin.ST])

$
0
0

Crude oil price forecasting has attracted substantial attention in the field of forecasting. Recently, the research on text-based crude oil price forecasting has advanced. To improve accuracy, some studies have added as many covariates as possible, such as textual and nontextual factors, to their models, leading to unnecessary human intervention and computational costs. Moreover, some methods are only designed for crude oil forecasting and cannot be well transferred to the forecasting of other similar futures commodities. In contrast, this article proposes a text-based forecasting framework for futures commodities that uses only future news headlines obtained from Investing.com to forecast crude oil prices. Two marketing indexes, the sentiment index and the topic intensity index, are extracted from these news headlines. Considering that the public's sentiment changes over time, the time factor is innovatively applied to the construction of the sentiment index. Taking the nature of the short news headlines into consideration, a short text topic model called SeaNMF is used to calculate the topic intensity of the futures market more accurately. Two methods, VAR and RFE, are used for lag order judgment and feature selection, respectively, at the model construction stage. The experimental results show that the Ada-text model outperforms the Adaboost.RT baseline model and the other benchmarks.


Viewing all articles
Browse latest Browse all 1798

Trending Articles